Relasi dan Fungsi Bagian 3

Bahan Kuliah
IF2120 Matematika Diskrit

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI - ITB

Relasi Kesetaraan

DEFINISI. Relasi *R* pada himpunan *A* disebut **relasi kesetaraan** (*equivalence relation*) jika ia refleksif, setangkup dan menghantar.

• Secara intuitif, di dalam relasi kesetaraan, dua benda berhubungan jika keduanya memiliki beberapa sifat yang sama atau memenuhi beberapa persyaratan yang sama.

 Dua elemen yang dihubungkan dengan relasi kesetaraan dinamakan setara (equivalent). • Contoh: Misalkan A = himpunan mahasiswa dan R adalah relasi pada A sedemikian sehingga $(a, b) \in R$ jika a satu angkatan dengan b.

R refleksif: setiap mahasiswa seangkatan dengan dirinya sendiri

R setangkup: jika α seangkatan dengan b, maka b pasti seangkatan dengan α .

R menghantar: jika a seangkatan dengan b dan b seangkatan dengan c, maka pastilah a seangkatan dengan c.

Dengan demikian, R adalah relasi kesetaraan.

Relasi Pengurutan Parsial

DEFINISI. Relasi *R* pada himpunan *S* dikatakan **relasi pengurutan parsial** (*partial ordering relation*) jika ia refleksif, tolak-setangkup, dan menghantar.

Himpunan S bersama-sama dengan relasi R disebut **himpunan terurut secara parsial** (partially ordered set, atau poset), dan dilambangkan dengan (S, R).

Contoh: Relasi ≥ pada himpunan bilangan bulat adalah relasi pengurutan parsial.

Alasan:

Relasi \geq refleksif, karena $a \geq a$ untuk setiap bilangan bulat a;

Relasi \geq tolak-setangkup, karena jika $a \geq b$ dan $b \geq a$, maka a = b;

Relasi \geq menghantar, karena jika $a \geq b$ dan $b \geq c$ maka $a \geq c$.

Contoh: Relasi "habis membagi" pada himpunan bilangan bulat adalah relasi pengurutan parsial.

Alasan: relasi "habis membagi" bersifat refleksif, tolak-setangkup, dan menghantar.

 Secara intuitif, di dalam relasi pengurutan parsial, dua buah benda saling berhubungan jika salah satunya

- lebih kecil (lebih besar) daripada,
- atau lebih rendah (lebih tinggi) daripada lainnya

menurut sifat atau kriteria tertentu.

• Istilah pengurutan menyatakan bahwa benda-benda di dalam himpunan tersebut diurutkan berdasarkan sifat atau kriteria tersebut.

 Ada juga kemungkinan dua buah benda di dalam himpunan tidak berhubungan dalam suatu relasi pengurutan parsial. Dalam hal demikian, kita tidak dapat membandingkan keduanya sehingga tidak dapat diidentifikasi mana yang lebih besar atau lebih kecil.

• Itulah alasan digunakan istilah pengurutan parsial atau pengurutan taklengkap

Klosur Relasi (closure of relation)

• Contoh kasus 1: Relasi $R = \{(1, 1), (1, 3), (2, 3), (3, 2)\}$ pada himpunan $A = \{1, 2, 3\}$ tidak bersifat refleksif.

• Bagaimana membuat relasi refleksif yang sesedikit mungkin dan mengandung *R*?

• Tambahkan (2, 2) dan (3, 3) ke dalam R (karena dua elemen relasi ini yang belum terdapat di dalam R)

• Relasi baru, S, mengandung R, yaitu

$$S = \{(1, 1), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)\}$$

• Relasi S disebut klosur refleksif (reflexive closure) dari R.

• Contoh kasus 2: Relasi $R = \{(1, 3), (1, 2), (2, 1), (3, 2), (3, 3)\}$ pada himpunan $A = \{1, 2, 3\}$ tidak setangkup.

• Bagaimana membuat relasi setangkup yang sesedikit mungkin dan mengandung *R*?

Tambahkan (3, 1) dan (2, 3) ke dalam R
 (karena dua elemen relasi ini yang belum terdapat di dalam S agar S menjadi setangkup).

• Relasi baru, S, mengandung R:

$$S = \{(1, 3), (3, 1), (1, 2), (2, 1), (3, 2), (2, 3), (3, 3)\}$$

• Relasi S disebut klosur setangkup (symmetric closure) dari R.

• Misalkan R adalah relasi pada himpunan A. R dapat memiliki atau tidak memiliki sifat **P**, seperti refleksif, setangkup, atau menghantar.

• Jika terdapat relasi *S* dengan sifat **P** yang mengandung *R* sedemikian sehingga *S* adalah himpunan bagian dari setiap relasi dengan sifat *P* yang mengandung *R*,

• maka S disebut **klosur** (*closure*) atau tutupan dari R.

Klosur Refleksif

• Misalkan R adalah sebuah relasi pada himpunan A.

• Klosur refleksif dari R adalah $R \cup \Delta$, yang dalam hal ini

$$\Delta = \{(a, a) \mid a \in A\}.$$

• **Contoh**: Misalkan *R* = {(1, 1), (1, 3), (2, 3), (3, 2)} adalah relasi pada *A* = {1, 2, 3}

maka

$$\Delta = \{(1, 1), (2, 2), (3, 3)\},\$$

sehingga klosur refleksif dari R adalah

$$R \cup \Delta = \{(1, 1), (1, 3), (2, 3), (3, 2)\} \cup \{(1, 1), (2, 2), (3, 3)\}$$

= $\{(1, 1), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)\}$

Contoh: Misalkan R adalah relasi

$$\{(a, b) \mid a \neq b\}$$

pada himpunan bilangan bulat.

Klosur refleksif dari R adalah

Klosur setangkup

• Misalkan R adalah sebuah relasi pada himpunan A.

• Klosur setangkup dari R adalah $R \cup R^{-1}$, dengan $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.

• Contoh: Misalkan $R = \{(1, 3), (1, 2), (2, 1), (3, 2), (3, 3)\}$ adalah relasi pada $A = \{1, 2, 3\},$

maka

$$R^{-1} = \{(3, 1), (2, 1), (1, 2), (2, 3), (3, 3)\}$$

sehingga klosur setangkup dari R adalah

$$R \cup R^{-1} = \{(1, 3), (1, 2), (2, 1), (3, 2), (3, 3)\} \cup \{(3, 1), (2, 1), (1, 2), (2, 3), (3, 3)\}$$

= $\{(1, 3), (3, 1), (1, 2), (2, 1), (3, 2), (2, 3), (3, 3)\}$

• Contoh: Misalkan R adalah relasi $\{(a, b) \mid a \text{ habis membagi } b\}$ pada himpunan bilangan bulat.

Klosur setangkup dari R adalah

$$R \cup R^{-1} = \{(a, b) \mid a \text{ habis membagi } b\} \cup \{(b, a) \mid b \text{ kelipatan } a\}$$

= $\{(a, b) \mid a \text{ habis membagi } b \text{ atau } b \text{ kelipatan } a\}$

Klosur menghantar

 Pembentukan klosur menghantar lebih sulit daripada dua buah klosur sebelumnya.

Contoh: R = {(1, 2), (1, 4), (2, 1), (3, 2)} adalah relasi A = {1, 2, 3, 4}.
 R tidak transitif karena tidak mengandung semua pasangan (a, c) sedemikian sehingga (a, b) dan (b, c) di dalam R.

Pasangan (a, c) yang tidak terdapat di dalam R adalah (1, 1), (2, 2), (2, 4), dan (3, 1).

• Penambahan semua pasangan ini ke dalam R sehingga menjadi

$$S = \{(1, 2), (1, 4), (2, 1), (3, 2), (1, 1), (2, 2), (2, 4), (3, 1)\}$$

tidak menghasilkan relasi yang bersifat menghantar karena, misalnya terdapat $(3, 1) \in S$ dan $(1, 4) \in S$, tetapi $(3, 4) \notin S$.

• Kosur menghantar dari R adalah

$$R^* = R \cup R^2 \cup R^3 \cup ... \cup R^n$$

• Jika M_R adalah matriks yang merepresentasikan R pada sebuah himpunan dengan n elemen, maka matriks klosur menghantar R^* adalah

$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee ... \vee M_R^{[n]}$$

Misalkan $R = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 2)\}$ adalah relasi pada himpunan $A = \{1, 2, 3\}$. Tentukan klosur menghantar dari R.

Penyelesaian:

Matriks yang merepresentasikan relasi R adalah

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Maka, matriks klosur menghantar dari R adalah

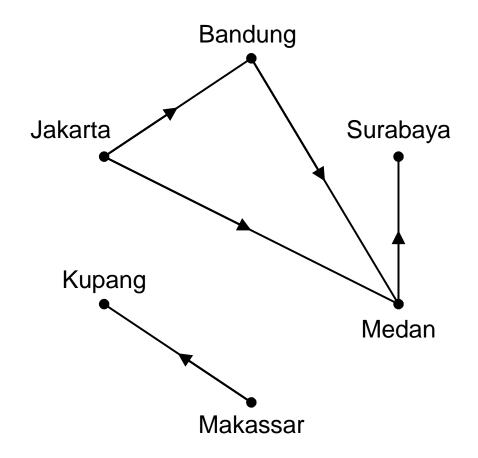
$$M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]}$$

Karena

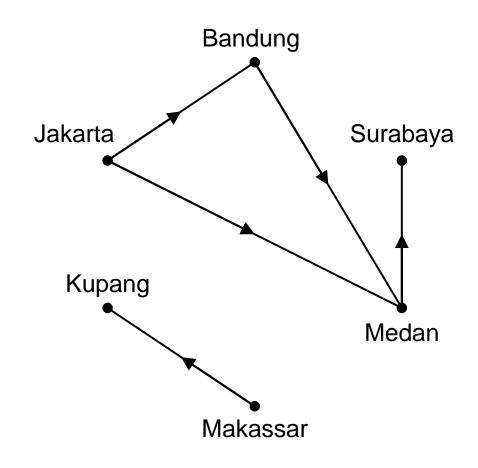
$$M_R^{[2]} = M_R \cdot M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{dan } M_R^{[3]} = M_R \cdot M_R^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

maka

$$M_{R^*} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$


Dengan demikian, $R^* = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3)\}$

Aplikasi klosur menghantar


• Klosur menghantar menggambarkan bagaimana pesan dapat dikirim dari satu kota ke kota lain baik melalui hubungan komunikasi langsung atau melalui kota antara sebanyak mungkin [LIU85].

 Misalkan jaringan komputer mempunyai pusat data di Jakarta, Bandung, Surabaya, Medan, Makassar, dan Kupang.

 Misalkan R adalah relasi yang mengandung (a, b) jika terdapat saluran telepon dari kota a ke kota b.

- Karena tidak semua link langsung dari satu kota ke kota lain, maka pengiriman data dari Jakarta ke Surabaya tidak dapat dilakukan secara langsung.
- Relasi R tidak menghantar karena ia tidak mengandung semua pasangan pusat data yang dapat dihubungkan (baik link langsung atau tidak langsung).
- Klosur menghantar adalah relasi yang paling minimal yang berisi semua pasangan pusat data yang mempunyai link langsung atau tidak langsung dan mengandung *R*.

